Tris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (2024)

Tris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (1)metal-organic compounds

Issue contentsTris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (7)

Tris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (9)

Article statistics

Tris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (11)Download citation

Download PDF of articleTris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (13)

Acta Cryst. (2010). E66, m103-m104
https://doi.org/10.1107/S1600536809054580

Tris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (26)

G. Brewer, R. J. Butcher and J. P. Jasinski

The title compound, [Ni(C2H8N2)3]I2, crystallizes with an [Ni(en)32+] cation (en is ethane-1,2-diamine) and two iodide ions in the asymmetric unit. Two of the en ligands surrrounding the Ni2+ ion have disordered C atoms, while the third exhibits extensive weak N—HTris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (27)I inter­actions with the two iodide ions that extend throughout the crystalline lattice, producing an infinite network along (011).

ReadarticleSimilararticles

Supporting information

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809054580/pb2013sup1.cif
Contains datablocks global, I

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809054580/pb2013Isup2.hkl
Contains datablock I

CCDC reference: 766702

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean Tris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (32)(C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.034
  • wR factor = 0.091
  • Data-to-parameter ratio = 32.7

checkCIF/PLATON results

No syntax errors foundTris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (33)Alert level BPLAT910_ALERT_3_B Missing # of FCF Reflections Below Th(Min) ..... 17PLAT923_ALERT_1_B S values in the CIF and FCF Differ by ....... 0.03Tris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (34)Alert level CPLAT230_ALERT_2_C Hirshfeld Test Diff for C11A -- C12A .. 6.64 suPLAT420_ALERT_2_C D-H Without Acceptor >N11A - >H11A ... ?PLAT420_ALERT_2_C D-H Without Acceptor >N12A - >H12C ... ?PLAT420_ALERT_2_C D-H Without Acceptor >N22A - >H22C ... ?PLAT420_ALERT_2_C D-H Without Acceptor >N22A - >H22D ... ?PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 12PLAT480_ALERT_4_C Long H...A H-Bond Reported H12C .. I2 .. 3.15 Ang.PLAT480_ALERT_4_C Long H...A H-Bond Reported H11F .. I2 .. 3.15 Ang.PLAT480_ALERT_4_C Long H...A H-Bond Reported H12G .. I2 .. 3.07 Ang.PLAT480_ALERT_4_C Long H...A H-Bond Reported H12H .. I1 .. 3.27 Ang.PLAT480_ALERT_4_C Long H...A H-Bond Reported H22D .. I1 .. 3.19 Ang.PLAT480_ALERT_4_C Long H...A H-Bond Reported H21F .. I1 .. 3.22 Ang.PLAT480_ALERT_4_C Long H...A H-Bond Reported H22G .. I2 .. 3.21 Ang.PLAT481_ALERT_4_C Long D...A H-Bond Reported N22B .. I2 .. 4.06 Ang.PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 433PLAT922_ALERT_1_C wR2 * 100.0 in the CIF and FCF Differ by ....... 0.26Tris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (35)Alert level GPLAT301_ALERT_3_G Note: Main Residue Disorder ................... 35.00 Perc.PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 36PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 4 N21A-NI -N31 -C31 -34.10 1.40 1.555 1.555 1.555 1.555PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 13 N12A-NI -N32 -C32 -25.70 1.50 1.555 1.555 1.555 1.555PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 30 N22B-NI -N11A-C11A -76.00 4.00 1.555 1.555 1.555 1.555PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 39 N32 -NI -N12A-C12A -66.10 1.80 1.555 1.555 1.555 1.555PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 44 N22A-NI -N11B-C11B 41.00 3.00 1.555 1.555 1.555 1.555PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 51 N22B-NI -N11B-C11B 94.00 4.00 1.555 1.555 1.555 1.555PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 64 N31 -NI -N21A-C21A -63.50 1.60 1.555 1.555 1.555 1.555PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 77 N11B-NI -N22A-C22A -134.00 3.00 1.555 1.555 1.555 1.555PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 99 N11B-NI -N22B-C22B -161.00 3.00 1.555 1.555 1.555 1.555PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 104 N11A-NI -N22B-C22B -27.00 5.00 1.555 1.555 1.555 1.555PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... ! 0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 13 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 19 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Recent work has shown that an iron(II) Schiff base complex oftris(2-aminoethyl)amine(tren) with imidazole-2-carboxaldehyde form double saltswith metal (K+, Rb+, Cs+ and NH4+) perchlorates (Brewer etal., 2007) and metal (M = Na+, K+, Rb+, Cs+ andNH4+)tetrafluoroborates (Alvarado et al., 2009). Thus thissystem shows size selectivity for alkali metal cations. Structural studies ofthe thiocyanate salts reveal a linear polymeric anion,[(M(SCN)3)2-]n. [Ni(en)3]2+and [Zn(en)3]2+ react with MX (M = K+ or NH4+,X=SCN- or SeCN-–) to form double salts,[Ni(en)3](SCN)2.NH4(SCN) (Dvorkin et al., 1991) and[Ni(en)3](SeCN)2.K(SeCN) (Farago et al., 1967) or[Zn(en)3](SCN)2.K(SCN) (Dvorkin et al., 1989). Many of thesestructures also reveal a linear polymeric anion,[(MX3)2-]n (X=ClO4- or BF4–), similar to thatobserved above suggesting that anions of this type are stable in certainsettings and may be used in other reactions. The anions in all ofthe above complexes are tethered to the cations through hydogen bondsinvolving either amine, –NH2 or the bidentate hydrogen bonding donor,-N=Cimine(H)—Cimidazole—Nimidazole(H).In an effort to determine the nature of the interactionsbetween the amine, –NH2 (in the cation building unit used in the formationof double salts) and the anion in stabilizing these salts we report thecrystal structure of the title compound, C6H24N6NiI2, (I).

C6H24N6NiI2, (I), crystallizes with a [Ni(en)32+] cation and twoI_ ions in the asymmetric unit (Fig. 1). In the cation, two of the1,2-ethanediamine-N,N' rings surrrounding the Ni2+ ion containdisordered carbon and nitrogen atoms while the third exhibits extensive weakN—H···I interactions with the two iodide ions (Table 1) thatextend throughout the crystalline lattice producing an infinitenetwork along the (011) plane of the unit cell (Fig. 2). The major componentsof the two disordered 5-membered Ni2+-1,2-ethanediamine-N,N' ringsadopt sightly distorted half-chair conformations (Cremer & Pople, 1975) withpuckering parameters Q(2), and Phi(2) of 0.403(2) Å, 86.767(6)° (ring 11 =Ni/N11/C11A/C12A/N12; 0.744) and 0.423(5) Å, 82.357(0)° (ring 21 =Ni/N21/C21A/C22A/N22; 0.684), respectively. The Q(2), and Phi(2) values forring 31 (Ni/N31/C31/C32/N32) are 0.438(4)Å and 270.967(6)°. For an idealhalf-chair, Phi(2) = k x 36° + 18° or 180° + Phi(2). The dihedralangle between the mean planes of the normal ring (31) and the major componentsof the disordered rings (11 & 21) measures 85.6(8)° and 83.5(0)°, whilebetween rings 11 and 21 themselves is 87.2(7)°. Bond distances within thecation are normal (Allen et al., 2002) and comparable to thoseinsimilar structures (Dvorkin et al., 1989, 1991; Faragoet al.,1967; Cramer et al. 1976; Cramer & Huneke,1978).

The presence of I1 and I2 in the crystal lattice allows for theformation of a collection of weak intermolecular N–H···I interactions whichthereby influences crystal stability (Table 1).

Related literature top

For related structures, see: Cramer et al. (1976); Cramer &Huneke(1978); Korp et al. (1980); Raston et al.(1978); Swink & Atoji(1960); Wieczorrek (2000).For double salts, see: Alvarado et al. (2009);Brewer et al. (2007);Dvorkin et al. (1989, 1991);Farago et al. (1967).For a description of the Cambridge Structural Database, see:Allen (2002). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Nickel(II) chloride hexahydrate was dissolved in water and excessethylenediamine was added to the green solution. The resulting violet/purplesolution was allowed to go to dryness. The crude [Ni(en)3]Cl2 wasredissolved in water saturated with potassium iodide. The dark blockishcrystals suitable for x-ray studies, in space group Pbca, werecollected by filtration on standing.

Refinement top

All of the H atoms were placed in their calculated positions and then refinedusing the riding model with N—H = 0.93 Å, C—H = 0.95–0.99 Å, and withUiso(H) = 1.18–1.51Ueq(C,N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top

Fig. 1. Molecular structure of the title compound, C6H24N6NiI2, showingthe [Ni(en)32+] cation and two I_ ions in the asymmetric unit, the atomlabeling scheme and 50% probability displacement ellipsoids. Only the majorcomponents of disordered carbon atoms (C11A, C12A & C21A, C22A) in rings 11(Ni—N11—C11A—C12A—N12: 0.744(12)) and 21(Ni—N21—C21A—C22A—N22; 0.684(9)) are depicted. Dashed lines indicateweak N—H···I hydrogen bond interactions.
Fig. 2. Packing diagram of the title compound, (I), viewed down the aaxis. Dashed lines indicate weak intermolecular N—H···Iinteractions which produces a infinite weak bonding network arranged along the(011) plane of the unit cell.

Tris(ethane-1,2-diamine-κ2N,N')nickel(II) diiodide top

Crystal data

top

[Ni(C2H8N2)3]I2F(000) = 1888
Mr = 492.82Dx = 2.061 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8584 reflections
a = 14.7502 (6) Åθ = 4.6–32.4°
b = 13.4881 (4) ŵ = 5.10 mm1
c = 15.9624 (7) ÅT = 200 K
V = 3175.8 (2) Å3Prism, pale purple
Z = 80.55 × 0.47 × 0.38 mm

Data collection

top

Oxford Diffraction Gemini R Mo
diffractometer
5271 independent reflections
Radiation source: Enhance (Mo) X-ray Source2835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.6°
ω scansh = 2119
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
k = 1019
Tmin = 0.337, Tmax = 1.000l = 2416
19070 measured reflections

Refinement

top

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
5271 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 1.65 e Å3
36 restraintsΔρmin = 1.09 e Å3

Crystal data

top

[Ni(C2H8N2)3]I2V = 3175.8 (2) Å3
Mr = 492.82Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.7502 (6) ŵ = 5.10 mm1
b = 13.4881 (4) ÅT = 200 K
c = 15.9624 (7) Å0.55 × 0.47 × 0.38 mm

Data collection

top

Oxford Diffraction Gemini R Mo
diffractometer
5271 independent reflections
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
2835 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 1.000Rint = 0.042
19070 measured reflections

Refinement

top

R[F2 > 2σ(F2)] = 0.03436 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.96Δρmax = 1.65 e Å3
5271 reflectionsΔρmin = 1.09 e Å3
161 parameters

Special details

top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factorwR and goodness of fit S are based on F2, conventionalR-factors R are based on F, with F set to zero fornegative F2. The threshold expression of F2 >σ(F2) is used only for calculating R-factors(gt) etc.and is not relevant to the choice of reflections for refinement.R-factors based on F2 are statistically about twice as largeas those based on F, and R- factors based on ALL data will beeven larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

top

xyzUiso*/UeqOcc. (<1)
I10.611433 (17)0.132498 (19)0.122134 (16)0.03800 (7)
I20.362274 (19)0.435966 (17)0.131522 (15)0.03860 (7)
Ni0.42318 (3)0.25520 (3)0.37608 (3)0.02275 (10)
N310.4175 (2)0.20616 (19)0.25125 (19)0.0332 (7)
H31A0.39590.25610.21740.040*
H31B0.47460.18910.23310.040*
N320.3624 (2)0.11503 (19)0.39826 (18)0.0293 (7)
H32A0.39020.08420.44280.035*
H32B0.30190.12280.41060.035*
C310.3571 (3)0.1199 (3)0.2463 (2)0.0391 (9)
H31C0.36960.08210.19440.047*
H31D0.29310.14190.24500.047*
C320.3731 (3)0.0550 (2)0.3218 (2)0.0358 (9)
H32C0.32910.00050.32220.043*
H32D0.43500.02670.31960.043*
N11A0.5571 (3)0.2044 (3)0.4045 (3)0.0245 (10)0.707(4)
H11A0.56820.21020.46110.029*0.707(4)
H11B0.56340.13890.38960.029*0.707(4)
C11A0.6215 (5)0.2661 (5)0.3569 (5)0.0366 (12)0.707(4)
H11C0.62150.24660.29720.044*0.707(4)
H11D0.68360.25790.37930.044*0.707(4)
C12A0.5913 (4)0.3713 (4)0.3662 (4)0.0398 (13)0.707(4)
H12A0.59800.39210.42540.048*0.707(4)
H12B0.63020.41470.33140.048*0.707(4)
N12A0.4962 (4)0.3832 (5)0.3404 (6)0.0336 (8)0.707(4)
H12C0.49300.39160.28320.040*0.707(4)
H12D0.47160.43830.36560.040*0.707(4)
N11B0.5522 (9)0.1873 (8)0.3751 (7)0.0245 (10)0.293(4)
H11E0.55960.14900.42230.029*0.293(4)
H11F0.55800.14710.32890.029*0.293(4)
C11B0.6210 (11)0.2659 (11)0.3730 (12)0.0366 (12)0.293(4)
H11G0.68000.23760.35550.044*0.293(4)
H11H0.62830.29450.42970.044*0.293(4)
C12B0.5934 (8)0.3463 (9)0.3126 (9)0.0398 (13)0.293(4)
H12E0.63780.40130.31440.048*0.293(4)
H12F0.59190.31970.25480.048*0.293(4)
N12B0.5030 (10)0.3828 (13)0.3364 (15)0.0336 (8)0.293(4)
H12G0.47570.41350.29150.040*0.293(4)
H12H0.50770.42790.37940.040*0.293(4)
N21A0.4089 (4)0.2980 (6)0.5029 (5)0.0373 (9)0.707(4)
H21A0.39060.24460.53470.045*0.707(4)
H21B0.46350.32020.52350.045*0.707(4)
C21A0.3404 (4)0.3778 (4)0.5075 (4)0.0418 (13)0.707(4)
H21C0.31790.38410.56570.050*0.707(4)
H21D0.36830.44170.49120.050*0.707(4)
C22A0.2648 (4)0.3553 (4)0.4514 (3)0.0352 (13)0.707(4)
H22A0.22260.41230.44930.042*0.707(4)
H22B0.23110.29690.47250.042*0.707(4)
N22A0.3007 (5)0.3345 (5)0.3666 (3)0.0279 (10)0.707(4)
H22C0.31050.39310.33850.033*0.707(4)
H22D0.25910.29790.33670.033*0.707(4)
N21B0.3959 (10)0.3014 (15)0.5003 (12)0.0373 (9)0.293(4)
H21E0.41260.25280.53760.045*0.293(4)
H21F0.42810.35810.51250.045*0.293(4)
C21B0.2973 (9)0.3207 (9)0.5064 (8)0.0418 (13)0.293(4)
H21G0.26350.25730.50660.050*0.293(4)
H21H0.28350.35660.55900.050*0.293(4)
C22B0.2706 (12)0.3802 (11)0.4348 (8)0.0352 (13)0.293(4)
H22E0.30500.44310.43430.042*0.293(4)
H22F0.20520.39610.43820.042*0.293(4)
N22B0.2895 (13)0.3231 (14)0.3576 (9)0.0279 (10)0.293(4)
H22G0.29010.36440.31170.033*0.293(4)
H22H0.24610.27520.34950.033*0.293(4)

Atomic displacement parameters (Å2)

top

U11U22U33U12U13U23
I10.02763 (13)0.04501 (14)0.04135 (15)0.00301 (10)0.00464 (11)0.00509 (12)
I20.05250 (17)0.02837 (11)0.03493 (14)0.00384 (10)0.00855 (12)0.00025 (11)
Ni0.0228 (2)0.01934 (17)0.0261 (2)0.00048 (15)0.00030 (19)0.00281 (17)
N310.0388 (18)0.0298 (14)0.0311 (16)0.0024 (13)0.0089 (14)0.0018 (14)
N320.0307 (16)0.0246 (13)0.0327 (16)0.0070 (12)0.0054 (13)0.0054 (13)
C310.047 (2)0.045 (2)0.0248 (18)0.0084 (18)0.0037 (18)0.0089 (18)
C320.051 (2)0.0238 (16)0.033 (2)0.0079 (16)0.0012 (18)0.0016 (16)
N11A0.0270 (18)0.0242 (19)0.022 (3)0.0039 (15)0.007 (2)0.0052 (18)
C11A0.035 (2)0.0383 (17)0.036 (3)0.0028 (14)0.0021 (18)0.0046 (18)
C12A0.031 (3)0.051 (3)0.037 (3)0.020 (2)0.010 (3)0.001 (3)
N12A0.0333 (19)0.0277 (15)0.0398 (19)0.0044 (13)0.0086 (16)0.0071 (15)
N11B0.0270 (18)0.0242 (19)0.022 (3)0.0039 (15)0.007 (2)0.0052 (18)
C11B0.035 (2)0.0383 (17)0.036 (3)0.0028 (14)0.0021 (18)0.0046 (18)
C12B0.031 (3)0.051 (3)0.037 (3)0.020 (2)0.010 (3)0.001 (3)
N12B0.0333 (19)0.0277 (15)0.0398 (19)0.0044 (13)0.0086 (16)0.0071 (15)
N21A0.052 (2)0.0343 (17)0.0254 (17)0.0082 (18)0.0119 (18)0.0056 (15)
C21A0.055 (4)0.033 (3)0.037 (3)0.003 (2)0.001 (3)0.002 (3)
C22A0.039 (2)0.036 (3)0.031 (2)0.0025 (19)0.0101 (19)0.003 (2)
N22A0.027 (2)0.0278 (19)0.0286 (19)0.0027 (16)0.0043 (16)0.0020 (16)
N21B0.052 (2)0.0343 (17)0.0254 (17)0.0082 (18)0.0119 (18)0.0056 (15)
C21B0.055 (4)0.033 (3)0.037 (3)0.003 (2)0.001 (3)0.002 (3)
C22B0.039 (2)0.036 (3)0.031 (2)0.0025 (19)0.0101 (19)0.003 (2)
N22B0.027 (2)0.0278 (19)0.0286 (19)0.0027 (16)0.0043 (16)0.0020 (16)

Geometric parameters (Å, º)

top

Ni—N312.101 (3)N11B—H11E0.9200
Ni—N22A2.105 (7)N11B—H11F0.9200
Ni—N11B2.113 (13)C11B—C12B1.507 (14)
Ni—N12A2.113 (7)C11B—H11G0.9900
Ni—N21A2.116 (7)C11B—H11H0.9900
Ni—N21B2.117 (19)C12B—N12B1.472 (14)
Ni—N322.122 (3)C12B—H12E0.9900
Ni—N11A2.140 (5)C12B—H12F0.9900
Ni—N12B2.180 (18)N12B—H12G0.9200
Ni—N22B2.194 (18)N12B—H12H0.9200
N31—C311.467 (4)N21A—C21A1.478 (8)
N31—H31A0.9200N21A—H21A0.9200
N31—H31B0.9200N21A—H21B0.9200
N32—C321.473 (4)C21A—C22A1.462 (8)
N32—H32A0.9200C21A—H21C0.9900
N32—H32B0.9200C21A—H21D0.9900
C31—C321.508 (5)C22A—N22A1.482 (6)
C31—H31C0.9900C22A—H22A0.9900
C31—H31D0.9900C22A—H22B0.9900
C32—H32C0.9900N22A—H22C0.9200
C32—H32D0.9900N22A—H22D0.9200
N11A—C11A1.473 (7)N21B—C21B1.481 (14)
N11A—H11A0.9200N21B—H21E0.9200
N11A—H11B0.9200N21B—H21F0.9200
C11A—C12A1.495 (8)C21B—C22B1.450 (14)
C11A—H11C0.9900C21B—H21G0.9900
C11A—H11D0.9900C21B—H21H0.9900
C12A—N12A1.470 (8)C22B—N22B1.480 (14)
C12A—H12A0.9900C22B—H22E0.9900
C12A—H12B0.9900C22B—H22F0.9900
N12A—H12C0.9200N22B—H22G0.9200
N12A—H12D0.9200N22B—H22H0.9200
N11B—C11B1.467 (14)
N31—Ni—N22A93.25 (16)C11A—C12A—H12A109.4
N31—Ni—N11B83.9 (3)N12A—C12A—H12B109.4
N22A—Ni—N11B173.3 (4)C11A—C12A—H12B109.4
N31—Ni—N12A91.3 (3)H12A—C12A—H12B108.0
N22A—Ni—N12A90.2 (2)C12A—N12A—Ni108.7 (4)
N11B—Ni—N12A83.8 (3)C12A—N12A—H12C109.9
N31—Ni—N21A171.6 (2)Ni—N12A—H12C109.9
N22A—Ni—N21A81.1 (2)C12A—N12A—H12D109.9
N11B—Ni—N21A102.4 (4)Ni—N12A—H12D109.9
N12A—Ni—N21A94.9 (3)H12C—N12A—H12D108.3
N31—Ni—N21B166.7 (4)C11B—N11B—Ni108.0 (9)
N22A—Ni—N21B75.8 (4)C11B—N11B—H11E110.1
N11B—Ni—N21B107.8 (5)Ni—N11B—H11E110.1
N12A—Ni—N21B96.2 (6)C11B—N11B—H11F110.1
N21A—Ni—N21B5.4 (5)Ni—N11B—H11F110.1
N31—Ni—N3281.99 (11)H11E—N11B—H11F108.4
N22A—Ni—N3295.9 (2)N11B—C11B—C12B110.4 (12)
N11B—Ni—N3289.7 (3)N11B—C11B—H11G109.6
N12A—Ni—N32171.2 (2)C12B—C11B—H11G109.6
N21A—Ni—N3292.4 (2)N11B—C11B—H11H109.6
N21B—Ni—N3291.5 (6)C12B—C11B—H11H109.6
N31—Ni—N11A97.93 (14)H11G—C11B—H11H108.1
N22A—Ni—N11A166.02 (19)N12B—C12B—C11B108.7 (12)
N11B—Ni—N11A14.3 (3)N12B—C12B—H12E110.0
N12A—Ni—N11A81.26 (19)C11B—C12B—H12E110.0
N21A—Ni—N11A88.6 (2)N12B—C12B—H12F110.0
N21B—Ni—N11A94.0 (4)C11B—C12B—H12F110.0
N32—Ni—N11A93.98 (14)H12E—C12B—H12F108.3
N31—Ni—N12B89.7 (6)C12B—N12B—Ni107.5 (10)
N22A—Ni—N12B92.4 (4)C12B—N12B—H12G110.2
N11B—Ni—N12B81.6 (4)Ni—N12B—H12G110.2
N12A—Ni—N12B2.6 (6)C12B—N12B—H12H110.2
N21A—Ni—N12B96.7 (7)Ni—N12B—H12H110.2
N21B—Ni—N12B98.2 (8)H12G—N12B—H12H108.5
N32—Ni—N12B168.6 (5)C21A—N21A—Ni108.3 (4)
N11A—Ni—N12B79.4 (4)C21A—N21A—H21A110.0
N31—Ni—N22B88.1 (4)Ni—N21A—H21A110.0
N22A—Ni—N22B6.7 (5)C21A—N21A—H21B110.0
N11B—Ni—N22B171.8 (5)Ni—N21A—H21B110.0
N12A—Ni—N22B94.6 (5)H21A—N21A—H21B108.4
N21A—Ni—N22B85.7 (4)C22A—C21A—N21A109.8 (5)
N21B—Ni—N22B80.4 (5)C22A—C21A—H21C109.7
N32—Ni—N22B90.9 (5)N21A—C21A—H21C109.7
N11A—Ni—N22B172.7 (4)C22A—C21A—H21D109.7
N12B—Ni—N22B96.7 (6)N21A—C21A—H21D109.7
C31—N31—Ni109.0 (2)H21C—C21A—H21D108.2
C31—N31—H31A109.9C21A—C22A—N22A109.1 (5)
Ni—N31—H31A109.9C21A—C22A—H22A109.9
C31—N31—H31B109.9N22A—C22A—H22A109.9
Ni—N31—H31B109.9C21A—C22A—H22B109.9
H31A—N31—H31B108.3N22A—C22A—H22B109.9
C32—N32—Ni107.9 (2)H22A—C22A—H22B108.3
C32—N32—H32A110.1C22A—N22A—Ni109.7 (4)
Ni—N32—H32A110.1C22A—N22A—H22C109.7
C32—N32—H32B110.1Ni—N22A—H22C109.7
Ni—N32—H32B110.1C22A—N22A—H22D109.7
H32A—N32—H32B108.4Ni—N22A—H22D109.7
N31—C31—C32108.8 (3)H22C—N22A—H22D108.2
N31—C31—H31C109.9C21B—N21B—Ni107.4 (10)
C32—C31—H31C109.9C21B—N21B—H21E110.2
N31—C31—H31D109.9Ni—N21B—H21E110.2
C32—C31—H31D109.9C21B—N21B—H21F110.2
H31C—C31—H31D108.3Ni—N21B—H21F110.2
N32—C32—C31109.0 (3)H21E—N21B—H21F108.5
N32—C32—H32C109.9C22B—C21B—N21B108.2 (12)
C31—C32—H32C109.9C22B—C21B—H21G110.1
N32—C32—H32D109.9N21B—C21B—H21G110.1
C31—C32—H32D109.9C22B—C21B—H21H110.1
H32C—C32—H32D108.3N21B—C21B—H21H110.1
C11A—N11A—Ni107.8 (3)H21G—C21B—H21H108.4
C11A—N11A—H11A110.2C21B—C22B—N22B108.5 (12)
Ni—N11A—H11A110.2C21B—C22B—H22E110.0
C11A—N11A—H11B110.2N22B—C22B—H22E110.0
Ni—N11A—H11B110.2C21B—C22B—H22F110.0
H11A—N11A—H11B108.5N22B—C22B—H22F110.0
N11A—C11A—C12A107.0 (5)H22E—C22B—H22F108.4
N11A—C11A—H11C110.3C22B—N22B—Ni105.9 (10)
C12A—C11A—H11C110.3C22B—N22B—H22G110.5
N11A—C11A—H11D110.3Ni—N22B—H22G110.5
C12A—C11A—H11D110.3C22B—N22B—H22H110.5
H11C—C11A—H11D108.6Ni—N22B—H22H110.5
N12A—C12A—C11A111.1 (5)H22G—N22B—H22H108.7
N12A—C12A—H12A109.4
N22A—Ni—N31—C3181.5 (3)C11B—C12B—N12B—Ni38.7 (17)
N11B—Ni—N31—C31104.6 (4)N31—Ni—N12B—C12B70.9 (13)
N12A—Ni—N31—C31171.7 (3)N22A—Ni—N12B—C12B164.2 (13)
N21A—Ni—N31—C3134.1 (14)N11B—Ni—N12B—C12B12.9 (13)
N21B—Ni—N31—C3147 (2)N12A—Ni—N12B—C12B162 (18)
N32—Ni—N31—C3114.0 (2)N21A—Ni—N12B—C12B114.5 (13)
N11A—Ni—N31—C31106.9 (3)N21B—Ni—N12B—C12B119.8 (13)
N12B—Ni—N31—C31173.8 (4)N32—Ni—N12B—C12B28 (4)
N22B—Ni—N31—C3177.1 (6)N11A—Ni—N12B—C12B27.2 (12)
N31—Ni—N32—C3214.7 (2)N22B—Ni—N12B—C12B159.0 (13)
N22A—Ni—N32—C32107.2 (3)N31—Ni—N21A—C21A63.5 (16)
N11B—Ni—N32—C3269.1 (4)N22A—Ni—N21A—C21A15.4 (5)
N12A—Ni—N32—C3225.7 (15)N11B—Ni—N21A—C21A158.8 (5)
N21A—Ni—N32—C32171.5 (3)N12A—Ni—N21A—C21A74.0 (5)
N21B—Ni—N32—C32176.9 (4)N21B—Ni—N21A—C21A30 (8)
N11A—Ni—N32—C3282.7 (3)N32—Ni—N21A—C21A111.0 (5)
N12B—Ni—N32—C3229 (3)N11A—Ni—N21A—C21A155.1 (5)
N22B—Ni—N32—C32102.7 (4)N12B—Ni—N21A—C21A75.9 (6)
Ni—N31—C31—C3239.9 (3)N22B—Ni—N21A—C21A20.3 (7)
Ni—N32—C32—C3140.5 (3)Ni—N21A—C21A—C22A41.1 (6)
N31—C31—C32—N3254.4 (4)N21A—C21A—C22A—N22A52.7 (7)
N31—Ni—N11A—C11A69.7 (4)C21A—C22A—N22A—Ni37.8 (6)
N22A—Ni—N11A—C11A73.1 (10)N31—Ni—N22A—C22A161.9 (4)
N11B—Ni—N11A—C11A79.1 (15)N11B—Ni—N22A—C22A134 (3)
N12A—Ni—N11A—C11A20.4 (4)N12A—Ni—N22A—C22A106.9 (5)
N21A—Ni—N11A—C11A115.6 (4)N21A—Ni—N22A—C22A11.9 (5)
N21B—Ni—N11A—C11A116.1 (7)N21B—Ni—N22A—C22A10.5 (7)
N32—Ni—N11A—C11A152.1 (4)N32—Ni—N22A—C22A79.6 (4)
N12B—Ni—N11A—C11A18.5 (7)N11A—Ni—N22A—C22A55.0 (11)
N22B—Ni—N11A—C11A76 (4)N12B—Ni—N22A—C22A108.3 (8)
Ni—N11A—C11A—C12A44.7 (6)N22B—Ni—N22A—C22A121 (5)
N11A—C11A—C12A—N12A54.8 (7)N31—Ni—N21B—C21B13 (3)
C11A—C12A—N12A—Ni36.2 (7)N22A—Ni—N21B—C21B22.5 (10)
N31—Ni—N12A—C12A106.1 (5)N11B—Ni—N21B—C21B163.3 (10)
N22A—Ni—N12A—C12A160.6 (5)N12A—Ni—N21B—C21B111.1 (11)
N11B—Ni—N12A—C12A22.4 (6)N21A—Ni—N21B—C21B172 (9)
N21A—Ni—N12A—C12A79.5 (5)N32—Ni—N21B—C21B73.1 (12)
N21B—Ni—N12A—C12A84.8 (6)N11A—Ni—N21B—C21B167.2 (11)
N32—Ni—N12A—C12A66.1 (18)N12B—Ni—N21B—C21B112.9 (12)
N11A—Ni—N12A—C12A8.3 (5)N22B—Ni—N21B—C21B17.5 (12)
N12B—Ni—N12A—C12A53 (17)Ni—N21B—C21B—C22B47.1 (15)
N22B—Ni—N12A—C12A165.6 (6)N21B—C21B—C22B—N22B61.4 (18)
N31—Ni—N11B—C11B106.4 (10)C21B—C22B—N22B—Ni42.9 (16)
N22A—Ni—N11B—C11B41 (3)N31—Ni—N22B—C22B173.6 (11)
N12A—Ni—N11B—C11B14.4 (10)N22A—Ni—N22B—C22B34 (4)
N21A—Ni—N11B—C11B79.3 (11)N11B—Ni—N22B—C22B161 (3)
N21B—Ni—N11B—C11B80.2 (12)N12A—Ni—N22B—C22B82.5 (12)
N32—Ni—N11B—C11B171.7 (10)N21A—Ni—N22B—C22B12.2 (11)
N11A—Ni—N11B—C11B64.3 (15)N21B—Ni—N22B—C22B13.1 (12)
N12B—Ni—N11B—C11B15.8 (12)N32—Ni—N22B—C22B104.5 (11)
N22B—Ni—N11B—C11B94 (4)N11A—Ni—N22B—C22B27 (5)
Ni—N11B—C11B—C12B42.4 (16)N12B—Ni—N22B—C22B84.1 (13)
N11B—C11B—C12B—N12B55.6 (19)

Hydrogen-bond geometry (Å, º)

top

D—H···AD—HH···AD···AD—H···A
N31—H31A···I20.922.833.731 (3)167
N31—H31B···I10.922.793.663 (3)158
N32—H32A···I2i0.923.053.786 (3)138
N32—H32B···I1ii0.922.863.724 (3)157
N11A—H11B···I2iii0.922.973.854 (4)162
N12A—H12C···I20.923.153.940 (8)145
N11B—H11F···I2iii0.923.153.619 (12)114
N12B—H12G···I20.923.073.94 (2)159
N12B—H12H···I1iv0.923.273.824 (16)121
N21A—H21A···I2i0.922.923.826 (8)171
N21A—H21B···I1i0.922.773.665 (7)166
N22A—H22D···I1ii0.923.193.905 (7)136
N21B—H21E···I2i0.923.053.86 (2)148
N21B—H21F···I1i0.923.223.832 (16)125
N22B—H22G···I20.923.214.061 (16)154
N22B—H22H···I1ii0.922.803.69 (2)163

Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)3]I2
Mr492.82
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)14.7502 (6), 13.4881 (4), 15.9624 (7)
V3)3175.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)5.10
Crystal size (mm)0.55 × 0.47 × 0.38
Data collection
DiffractometerOxford Diffraction Gemini R Mo
diffractometer
Absorption correctionMulti-scan
CrysAlis RED (Oxford Diffraction, 2009)
Tmin, Tmax0.337, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19070, 5271, 2835
Rint0.042
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 0.96
No. of reflections5271
No. of parameters161
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 1.09

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º)

top

Ni—N312.101 (3)Ni—N21A2.116 (7)
Ni—N22A2.105 (7)Ni—N322.122 (3)
Ni—N12A2.113 (7)Ni—N11A2.140 (5)
N31—Ni—N22A93.25 (16)N12A—Ni—N32171.2 (2)
N31—Ni—N12A91.3 (3)N21A—Ni—N3292.4 (2)
N22A—Ni—N12A90.2 (2)N31—Ni—N11A97.93 (14)
N31—Ni—N21A171.6 (2)N22A—Ni—N11A166.02 (19)
N22A—Ni—N21A81.1 (2)N12A—Ni—N11A81.26 (19)
N12A—Ni—N21A94.9 (3)N21A—Ni—N11A88.6 (2)
N31—Ni—N3281.99 (11)N32—Ni—N11A93.98 (14)
N22A—Ni—N3295.9 (2)

Hydrogen-bond geometry (Å, º)

top

D—H···AD—HH···AD···AD—H···A
N31—H31A···I20.922.833.731(3)166.6
N31—H31B···I10.922.793.663(3)158.4
N32—H32A···I2i0.923.053.786(3)138.0
N32—H32B···I1ii0.922.863.724(3)156.7
N11A—H11B···I2iii0.922.973.854(4)162.2
N12A—H12C···I20.923.153.940(8)144.7
N11B—H11F···I2iii0.923.153.619(12)114.0
N12B—H12G···I20.923.073.94(2)158.6
N12B—H12H···I1iv0.923.273.824(16)120.8
N21A—H21A···I2i0.922.923.826(8)170.8
N21A—H21B···I1i0.922.773.665(7)165.7
N22A—H22D···I1ii0.923.193.905(7)136.3
N21B—H21E···I2i0.923.053.86(2)148.2
N21B—H21F···I1i0.923.223.832(16)125.4
N22B—H22G···I20.923.214.061(16)153.8
N22B—H22H···I1ii0.922.803.69(2)162.6

Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.


Tris(ethane-1,2-diamine-κ2N,N′)nickel(II) diiodide (2024)

References

Top Articles
Latest Posts
Article information

Author: Neely Ledner

Last Updated:

Views: 5716

Rating: 4.1 / 5 (62 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Neely Ledner

Birthday: 1998-06-09

Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

Phone: +2433516856029

Job: Central Legal Facilitator

Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.